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Abstract 
Model‐based standardization enables adjustment for confounding of a population‐averaged 
exposure effect on an outcome. It requires either a model for the probability of the exposure 
conditional on the confounders (an exposure model) or a model for the expectation of the 
outcome conditional on the exposure and the confounders (an outcome model). The 
methodology can also be applied to estimate averaged exposure effects within categories of an 
effect modifier and to test whether these effects differ or not. Recently, we extended that 
methodology for use with complex survey data, to estimate the effects of disability status on cost 
barriers to health care within three age categories and to test for differences. We applied the 
methodology to data from the 2007 Florida Behavioral Risk Factor Surveillance System Survey 
(BRFSS). The exposure modeling and outcome modeling approaches yielded two contrasting 
sets of results. In the present paper, we develop and apply to the BRFSS example two doubly 
robust approaches to testing and estimating effect modification with complex survey data; these 
approaches require that only one of these two models be correctly specified. Furthermore, 
assuming that at least one of the models is correctly specified, we can use the doubly robust 
approaches to develop and apply goodness‐of‐fit tests for the exposure and outcome models. We 
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compare the exposure modeling, outcome modeling, and doubly robust approaches in terms of a 
simulation study and the BRFSS example.  

1 Introduction 
Recently, Brumback et al. 1 presented a statistical methodology to address the question of 
whether the difference in risk of a cost barrier to health care between persons with and without 
disability differed by age category. Our colleagues at the Florida Office on Disability and Health 
were interested in using a population‐based sample, such as the Florida Behavioral Risk Factor 
Surveillance System Survey (BRFSS) 2, to answer this question to demonstrate for policy 
makers that interventions targeting younger persons with disability are much needed and cost‐
effective 3. To argue for cost‐effectiveness, it is helpful to use the risk difference. For example, 
even if the relative risk were constant across age groups, a greater risk difference in younger 
persons might imply that intervening to help that group could benefit more people overall than 
an intervention in another equal‐sized group. Brumback et al. 1 presented the crude (unadjusted) 
risk differences together with two contrasting sets of adjusted risk differences, based on two 
different methods for model‐based standardization 4. The first method requires a correct model 
for the probability of the exposure conditional on the confounders (an exposure model), and the 
second requires a correct model for the expectation of the outcome conditional on the exposure 
and the confounders (an outcome model). Referring to Table 1, the results based on the outcome 
modeling approach indicated that the youngest adults (aged 18–29 years) have the highest 
adjusted risk difference and that it is statistically significant. Thus, these results demonstrate 
what our colleagues hypothesized. However, the results based on the exposure modeling 
approach suggest that the youngest adults do not have the highest risk difference and moreover 
that it is not statistically different from 0. The aim of the present paper is to revisit the two sets of 
adjusted risk differences, this time developing and applying ‘doubly robust’ methods 5, 6 to 
determine which of the exposure or outcome models better fits our data. In the process, we aim 
to address gaps in the methodology and implementation of doubly robust methods for complex 
survey data and for testing and estimating effect modification.  

Table 1. Risk difference and 95% CI for the effect of disability on cost barriers to health care by age using 
three approaches, with complex survey data, Florida BRFSS Survey, 2007.  

Age group (years) Crude Exposure model Outcome model 

18–29 0.234 ( 0.108,0.360) 0.107 ( − 0.043,0.256) 0.158 ( 0.023,0.293) 

30–64 0.180 ( 0.149,0.212) 0.118 ( 0.080,0.156) 0.097 ( 0.067,0.127) 

65+ 0.038 ( 0.018,0.058) 0.021 ( − 0.001,0.044) 0.032 ( 0.010,0.054) 

test of effect‐measure modification  30.87 (P < 0.001)  9.55 (P < 0.001)  14.38 (P < 0.001)  

The goal of standardization 4 is to compare outcomes across two groups, after the groups have 
been standardized to have the same distribution of confounders. When the confounders can be 

https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0001
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0002
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0003
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0001
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0004
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-tbl-0001
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0005
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0006
https://onlinelibrary.wiley.com/doi/10.1002/sim.5532#sim5532-bib-0004


represented as a single categorical variable without too many categories (e.g., representing 
different categories of age‐by‐gender), standardization of each group typically proceeds by 
estimating the average outcome within each category and then taking a weighted average across 
categories according to a ‘standard’ distribution. When the confounders are inherently high‐
dimensional, a modeling approach is needed. The ‘exposure modeling’ enlists a model for the 
probability of belonging to the group conditional on the confounders 7, 8, whereas ‘outcome 
modeling’ instead uses a model for the expectation of the outcome conditional on the group and 
the confounders 9. ‘Model‐based standardization’ 4 is thus standardization using one of these 
two modeling approaches; the first approach requires that the exposure model be correct, 
whereas the second requires that the outcome model be correct. Bieler et al. 10 explained how to 
implement the outcome modeling approach with complex survey data and SUDAAN (Research 
Triangle Institute, Research Triangle Park, NC, USA), whereas Brumback et al. 1 explained how 
to implement both approaches with complex survey data and SAS (SAS Institute, Inc., Cary, NC, 
USA).  

The standard distribution we shall consider in this paper is the distribution of the confounders in 
the two groups combined (within a given level of the effect modifier). Using the combined 
distribution as the standard distribution is equivalent to comparing differences in outcomes 
assuming every participant in the study population belonged to one exposure group versus the 
other. In addition to yielding an intuitive interpretation, this choice of standard distribution is the 
most natural to implement. With some modification, the methods we present can also be applied 
to other standard distributions, such as the distribution of confounders in one exposure group.  

The approaches of interest in this paper combine the exposure model and the outcome model 
such that they have the property of being ‘doubly robust’, so termed because they give consistent 
estimators if either the exposure model or the outcome model is correct. Scharfstein, Rotnitzky, 
and Robins 11 first discovered doubly robust estimators and showed how to construct them. 
Bang and Robins 5 provided an overview of doubly robust estimation and gave details for 
several types of problems. More recently, Kang and Schafer 6 discussed a variety of ways to 
construct doubly robust estimators in the simple context of estimating a population mean from 
incomplete data. In this paper, we will extend the Bang and Robins 5 approach and also the Kang 
and Schafer 6 ,section 3.2 approach to test and estimate effect modification with complex survey 
data. There have been other efforts in evaluating and improving the performance of doubly 
robust estimators for a wide range of data settings. Austin 12 compared doubly robust methods 
with alternative strategies of estimating differences in proportions. Seaman and Copas 13 
investigated doubly robust estimators in the longitudinal data setting with missing response. 
Tchetgen Tchetgen 14 described a doubly robust method for standard logistic regression with 
covariates missing at random and also extended it for complex survey data. Cao et al. 15 
proposed methods for improving the efficiency of doubly robust estimators of a population 
mean. Tchetgen Tchetgen and Rotnitzky 16 examined an alternative doubly robust estimator in 
the logistic regression context. However, we are not aware of any literature other than 14 on 
extending doubly robust methods for use with complex survey data, and we are not aware of 
literature pertaining to testing and estimating effect modification using model‐based 
standardization with doubly robust methods.  
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Complex survey data are typically obtained using a multistage sampling design enlisting 
stratification and clustering at each stage, which typically results in unequal probability 
sampling. The population is first divided into primary strata and then into primary sampling units 
(PSUs, clusters) within each of the primary strata. PSUs are sampled from each of the primary 
strata at the first stage, then the process is repeated with secondary sampling units being sampled 
within the substrata, and so on. Sampled observations are assigned survey weights representing 
the inverse probability of selection. Estimators for complex survey data incorporate these survey 
weights, and the sampling distribution of the estimators is typically approximated as though the 
PSUs (first‐stage clusters) are resampled with replacement from each of the primary strata. This 
approach to estimating the sampling distribution has good properties, provided that a large 
number of PSUs have been selected. Otherwise, estimates of the sampling distribution need to 
account for subsequent stages of the sampling design. The BRFSS survey enlists stratification, 
and then individuals, designated as the PSUs, are sampled with unequal probabilities. Thus, there 
is no clustering. Technically, the design of the BRFSS is slightly more complicated, with 
household as the true PSU, followed by one individual within each household being selected at 
random. However, the difference is negligible between the two designs because of the small 
likelihood that individuals within the same household would be selected if this were permitted.  

The paper is organized as follows. In Section 2, we review the analyses and results of Brumback 
et al. 1. In Section 3, we develop a modified version of the doubly robust estimator due to Bang 
and Robins 5, as well as a modified version of the doubly robust estimator due to Kang and [6, 
section 3.2]. We also develop goodness‐of‐fit tests for the exposure and outcome models, 
considered separately, assuming that one of the two is correctly specified. In Section 4, we 
conduct simulation studies to compare the performance of the doubly robust approaches under 
various model specifications; we also evaluate the goodness‐of‐fit tests. In Section 5, we apply 
the new methodology to the Florida BRFSS data and compare it with the analyses of Brumback 
et al. 1; we also use the new methodology to determine which of the previous results based on 
either exposure modeling or outcome modeling is more plausible. Section 6 concludes with a 
discussion.  

2 Exposure modeling versus outcome modeling using the 
Florida Behavioral Risk Factor Surveillance System Survey  
We first define our targets of estimation, namely standardized risks within levels of an effect 
modifier and functions of these risks, such as the risk differences and contrasts of the risk 
differences. Let Y i be a binary outcome, Xi be a binary categorical exposure of interest, Mi be an 
effect modifier with K levels, Zi be a vector of confounders, and Wi be the complex survey 
weights. Our basic targets of estimation are the set of standardized risks 
θ(x,m) = EZ | M = mE(Y | X = x,M = m,Z) for varying levels of x and m. We are also interested in 
contrasts of these risks, that is, risk differences and differences of risk differences (to measure 
effect modification).  

Brumback et al. 1 described an exposure modeling approach that relies on correctness of a 
parametric model π(x,M,Z; α) for P(X = x | M,Z). It is common to use the additive logistic 
regression model logit(π(1,M,Z)) = Mα0 + Zα1. Note that for polytomous X, one could use ordinal 
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or multinomial logistic regression models. The parameter α is estimated using weighted logistic 
regression with the complex survey weights Wi (e.g., one could use SAS PROC 

SURVEYLOGISTIC), and then estimates of θ(x,m) are obtained using weighted linear 
regression with weights and covariates X, M, and D, where D is a vector 
of dummy variables representing the interaction between X and M. The covariance matrix of the 
standardized risks can be computed using the sandwich estimator implemented in, for example, 
SAS PROC SURVEYREG, although these ignore estimation of α. Alternatively, one can use a 
nonparametric bootstrap, resampling PSUs with replacement within primary strata. Then, either 
that bootstrap or the delta method can be used to estimate covariances of contrasts of functions of 
the standardized risks. As discussed in the previous section, in the BRFSS, the individual is the 
PSU, and the number of PSUs per stratum is very large. With some other surveys, for example 
the National Health Interview Survey, there are only two PSUs per stratum. In those cases, 
simple modifications to the bootstrap 17, 18 are effective.  

The outcome modeling approach described by Brumback et al. 1 relies on correctness of a 
parametric model f(X,M,Z; β) for E[Y | X,M,Z]. In general, we recommend using a generalized 
linear model with canonical link, including all main effects for X and M, all interaction terms 
between X and M (via D), and additional covariates that involve Z. Brumback et al. 1 used the 
model logit(f(X,M,Z)) = Xβ1 + Mβ2 + Dβ3 + Zβ4. The parameter β is estimated using weighted 

regression with weights Wi, and then estimates of θ(x,m) are constructed as  

(1) 

where is f(x,m,Zi) with in place of β. As described for the exposure modeling approach, 
the nonparametric bootstrap can be used to estimate the covariance of the standardized risks and 
covariances of their contrasts.  

In the Florida BRFSS analysis, Y i is the presence or absence of a cost barrier to health care, Xi is 
disability status, Mi is age, and Zi includes race/ethnicity, income, and education. Further, M has 
three levels and X two; thus, we are interested in six standardized risks. We are also interested in 
the three risk differences θ(1,m) − θ(0,m), m = 1,2,3, and in testing whether the measures of 
effect‐measure modification τ1 = (θ(1,3) − θ(0,3)) − (θ(1,1) − θ(0,1)) and 
τ2 = (θ(1,2) − θ(0,2)) − (θ(1,1) − θ(0,1)) are both equal to 0. Note that we could instead focus on 
relative risks such as θ(1,m) / θ(0,m) or on odds ratios, but risk differences are of primary interest 
to our collaborators given their focus on cost‐effectiveness in public health practice.  

Table 1 shows the estimated risk differences, as well as results of a chi‐squared test of effect 
modification, that is, τ1 = τ2 = 0. It presents the results of implementing three approaches: the 
crude stratification (unadjusted), the exposure modeling approach, and the outcome modeling 
approach. With the exposure model, persons between the ages of 18 and 29 years do not have a 
greater risk difference when compared with those between 30 and 64 years. Using the outcome 
model, however, suggests that the risk difference is indeed higher for those between 18 and 
29 years. To conclude whether our colleagues' goal of promoting interventions targeting younger 
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persons with disability is justified, it is of interest in the present paper to determine which model 
fits the data better. We do this using the doubly robust approaches described in the next section.  

3 Two doubly robust approaches and goodness‐of‐fit tests 
Our modified Bang and Robins 5 doubly robust approach resembles the outcome modeling 
approach described in the previous section, but with the addition of a set of special covariates, 
one for each joint setting of (x,m). We substitute an ‘augmented outcome model’ fdr(X,M,Z; β,ϕ) 
in place of f(X,M,Z; β) and then follow the outcome modeling approach. For this approach to 
work, one must specify f(X,M,Z; β) as a generalized linear model with canonical link. We 
recommend including the covariates X, M, D, and Z, and possibly also interactions between Z 
and D. Then, the original model is augmented with a set of ‘special covariates’, one for each 
joint level of x and m, which we denote by 

, with I(A = a) the indicator function 
for A = a, and . For the BRFSS data, we use the logistic 
regression model 

. Let ϕ be a vector with components ϕ(x,m). The parameters (β,ϕ) are estimated using weighted 

logistic regression with the complex survey weights Wi, and then estimates of 
θ(x,m) are constructed as  

(2) 

where is fdr(x,m,Zi) with in place of (β,ϕ,α), where α has been estimated as 
described earlier for the exposure modeling approach. One can use the nonparametric bootstrap, as 
described in Section 2, to estimate covariances.  

Why does this doubly robust approach work? It can be shown that when at least one of the two 

models is correct, the estimating equation that solves has expectation 0 and 
therefore is a consistent estimator of θ(x,m). When the augmented outcome model fdr(X,M,Z) is 
correct, the doubly robust approach works for the same reason that the outcome modeling 
approach works. When the original outcome model f(X,M,Z) is correct, then the augmented 
outcome model is automatically correct (let ϕ(x,m) = 0 for all (x,m)). When the original outcome 
model is incorrect but the exposure model π(x,M,Z) is correct, two mathematical ‘tricks’ can be 
used to show that the estimating equation has expectation 0. The first trick is used to show that 

the estimator solves the estimating equation  

(3) 
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where is π(x,m,Zi) with in place of α. The trick is to realize that  

(4) 

because this is one component of the weighted estimating equations that are solved to produce , 
assuming that an ordinary weighted generalized linear model regression algorithm is used, as in SAS 
PROC GENMOD or, for a binary outcome, SAS PROC SURVEYLOGISTIC.  

The second trick is to rewrite Equation 3 by adding and subtracting 
and then rearranging terms, so that the 

left‐hand side of 3 equals  

(5) 

Note that is a consistent estimator of α if the exposure model π(x,m,Zi) is correct. The first term of 5 is 
the exposure modeling estimating equation for θ(x,m) and hence has mean 0 if the exposure model is 
correct. The second term is itself a product of two terms, the second of which is a function of Zi only and 
the first of which has mean 0 conditional on Zi and Mi = m if the exposure model is correct. Therefore, 
Equation 5 and hence Equation 3 both have 0 mean, which implies that, subject to regularity conditions 

that are easily satisfied in our relatively simple setting, consistently estimates θ(x,m).  

Instead of the outcome model being augmented with special covariates, our modified Kang and 
Schafer 6 approach achieves double robustness using the original outcome model but estimated 
with augmented weights. Specifically, we estimate β of the original outcome model f(X,M,Z; β) 
using the product of the complex survey weights and an additional weight 
constructed from the estimated exposure model. We assume that f(X,M,Z; β) is a generalized 
linear model with canonical link. For this approach to work, one must include the covariates X, 
M, and D. We recommend also including Z, and possibly also interactions between Z and D. For 
our analysis of the BRFSS data, we did not include interactions between Z and D for the sake of 
parsimony and also to match the outcome model used by Brumback et al. 1. We estimate the 
parameter β by using weighted generalized linear model regression with weights 

, where is the estimated exposure model. Then, estimates 

of θ(x,m) are constructed as  

(6) 

where is f(x,m,Zi) with in place of β and solves the estimating equation  
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(7) 

where Si is a row vector from the design matrix (e.g., for the BRFSS data, Si = {1,Xi,Mi,Di,Zi}). Note that the 
estimating equation is a weighted version of the estimating equation for a generalized linear model with 
a canonical link,  

(8) 

When the outcome model is correct, that is, f(X,M,Z) = E[Y | X,M,Z], then taking the iterated 
expectation of 7 with respect to (Xi,Mi,Zi) shows that 7 has expectation 0 regardless of the 
correctness of the exposure model π(X,M,Z). Therefore, is a consistent estimator of β, and 

is in turn a consistent estimator of θ(x,m), for all values of x and m. To see why the 
estimator remains valid when the outcome model is incorrect but the exposure model is correct, 
consider first a hypothetical large finite population in which a complete set of potential outcomes 
is observed for each individual at each level of Xi; let N denote the number of observations in 
that population. Then, the estimating Equation 8 implies that  

(9) 

and  

(10) 

is a consistent estimator of the overall E(Y ), where is f(Xi,Mi,Zi) with estimates (from 
9) in place of β. This estimator is consistent regardless of the correctness of the outcome model. 
Equation 9 also leads to  

(11) 

where Nx,m is the total number of participants with X = x and M = m in the hypothetical population. 

Therefore, is a consistent estimator of θ(x,m). For a 
simple random sample, only one outcome is observed for any individual, corresponding to the 
individual's actual level of Xi. By correctly modeling and consistently estimating the exposure probability, 
we can use  
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(12) 

to construct a consistent estimator of θ(x,m). The weighting term reweights the 
observed population to resemble the hypothetical population with a complete set of potential outcomes 
for each individual at each level of Xi. In complex survey settings, we must further augment 12 with 
complex survey weights Wi to account for varying sampling probabilities of individuals; this leads to 
estimating Equation 7. Therefore, estimating Equation 7 also results in a consistent estimator 6 of θ(x,m) 
when the exposure model has the correct form but the outcome model is specified incorrectly.  

We now describe the test for the presence of effect modification. Let τ be a column vector of 
linearly independent measures of effect‐measure modification. For assessment of the differences 
of risk differences, τ has entries of the form (θ(1,ms) − θ(0,ms)) − (θ(1,mt) − θ(0,mt)), for ms and 
mt, two different levels of the effect modifier. Let be the estimated version of τ using a doubly 
robust model. To test whether τ = 0, we use the test statistic , where V em is the 
estimated covariance matrix of obtained from the nonparametric bootstrap for complex survey 
data, described in Section 2. Specifically, doubly robust estimation is applied to the bootstrap 
samples, and bootstrap estimates are obtained, where Nb is the number of 
bootstrap samples. V em is then calculated as the sample covariance matrix of . Under the 
null hypothesis of no effect‐measure modification, the test statistic Tem is distributed as χ2 with 
degrees of freedom equal to the dimension of τ.  

Next, we turn our attention to goodness‐of‐fit tests of the exposure and outcome models, 
assuming that at least one of the models is correct. Let 

be a column vector of estimated risk differences at 
K levels of M, using the outcome modeling approach. Let and be similarly defined, for the 
exposure modeling approach and a doubly robust approach, respectively. To test the outcome 
and exposure models against a doubly robust model, we use 

and , respectively, 
where V o and V e are the sample covariance matrices of bootstrap estimates 

and . Under the null 
hypothesis of no lack of fit, the test statistics To and Te are each distributed as χ2 with degrees of 
freedom equal to K.  

Table 2. Simulation results of estimating effect modification under four model specifications using 
modified Bang and Robins doubly robust estimation.  

Scenario 
Risk 

difference 
for M = 1  

Risk 
difference 
for M = 0  

Effect 
modification 

by M 

95% CI 
coverage for 

M = 1 (%)  

95% CI 
coverage for 

M = 0 (%)  

95% CI 
coverage for 

effect mod. (%) 

True 0.392 0.232 0.160 N/A N/A N/A 
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Scenario 
Risk 

difference 
for M = 1  

Risk 
difference 
for M = 0  

Effect 
modification 

by M 

95% CI 
coverage for 

M = 1 (%)  

95% CI 
coverage for 

M = 0 (%)  

95% CI 
coverage for 

effect mod. (%) 

Both 
outcome 
and 

0.390 0.231 0.158 94 94 94 

exposure 
correct       

Outcome 
correct, 0.391 0.229 0.162 95 94 93 

exposure 
incorrect       

Exposure 
correct, 0.385 0.230 0.155 93 97 94 

outcome 
incorrect       

Both 
outcome 
and 

0.419 0.238 0.180 88 93 92 

exposure 
incorrect       

We illustrate these tests in our simulation study, which follows, and also in a re‐analysis of the 
BRFSS data.  

4 Simulation study 
We conducted a simulation study to investigate performance of the methods under four different 
model specifications: both models correct, outcome model correct but exposure model incorrect, 
exposure model correct but outcome model incorrect, and neither model correct. We assessed 
bias as well as coverage of 95% CI under each specification, and we also evaluated performance 
of our tests of model specification.  

The correct population exposure model is logit (P(X = 1 | M,Z)) = 0.5 − 1M + 1Z + 0.5MZ, and the 
correct population outcome model is logit 
(P(Y = 1 | X,M,Z)) = − 0.5 + 1X − 0.5M + 1XM + 0.5Z + 1XMZ, where X is the exposure, M is a 
binary effect modifier distributed as Bernoulli(0.4), and Z is a confounder distributed as N(0,1), 
independent of M. We used Monte Carlo integration to obtain true values of parameters of 



interest. For the outcome model, the incorrect specification is logit 
(P(Y = 1 | X,M,Z)) = β0 + β1X + β2M + β3XM, and for the exposure model, the incorrect 
specification is logit (P(X = 1 | M,Z)) = α0 + α1Z.  

To simulate complex survey data, we first simulated an independent and identically distributed 
sample of size 3500 from the correct population models. Then, if Y i = Xi, the observation was 
kept with probability 0.5 and was assigned a survey weight of Wi = 2. Otherwise, the observation 
was kept with probability 1 and was assigned a survey weight of Wi = 1. We estimated 
parameters and conducted hypothesis tests as described in the preceding section. For 
investigating estimation of the parameters, we used the nonparametric bootstrap with 100 
samples for inference, and we simulated 500 datasets. For investigating the performance of our 
hypothesis tests, we used the nonparametric bootstrap with 500 samples for inference, and we 
simulated 200 datasets.  

Table 2 presents the results of estimating the risk differences for M = 1 and M = 0 as well as 
estimating a measure of effect modification (the difference of the risk differences) using the 
modified Bang and Robins approach. The true values are presented in the first row. When at least 
one model is correctly specified, biases are slight, and coverages are close to 95%. When both 
models are incorrectly specified, the bias increases, and the coverage degrades, particularly for 
M = 1. However, the coverage probability for the measure of effect modification (92%) does not 
deviate too much from 95%. Table 3 presents the results of estimation using the modified Kang 
and Schafer approach. Just as in Table 2, when at least one model is correctly specified, 
estimation results are very good. However, when both models are incorrectly specified, the 
modified Kang and Schafer method performs poorly, with 34% and 47% coverage probabilities 
for M = 1 and the measure of effect modification, respectively. This is not surprising because 
when both models are incorrectly specified as before, the Kang and Schafer approach is identical 
to the exposure modeling approach with the incorrect exposure model. For comparison, we also 
applied the following: (i) the exposure modeling approach using the incorrect exposure model 
and (ii) the outcome modeling approach using the incorrect outcome model. For M = 1, the 
estimated risk differences were 0.471 and 0.585, respectively, with 95% CI coverage of 32% and 
0%, respectively. For M = 0, the estimated risk differences were 0.215 and 0.323, respectively, 
with 95% CI coverage of 92% and 6%, respectively. For the differences of the two risk 
differences, the estimates were 0.257 and 0.261, respectively, with 95% CI coverage of 42% and 
16%, respectively. We note that the estimated risk differences from both methods (i) and (ii) for 
M = 1 and M = 0 differ substantially from those obtained with the modified Bang and Robins 
approach when both models are incorrectly specified. However, the estimated risk differences 
from method (i) are essentially identical to, and from method (ii) differ substantially from, those 
obtained with the modified Kang and Schafer approach when both models are incorrectly 
specified.  

Table 3. Simulation results of estimating effect modification under four model specifications using 
modified Kang and Schafer doubly robust estimation.  
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Scenario 
Risk 

difference 
for M = 1  

Risk 
difference 
for M = 0  

Effect 
modification 

by M 

95% CI 
coverage for 

M = 1 (%)  

95% CI 
coverage for 

M = 0 (%)  

95% CI 
coverage for 
effect mod. 

(%) 

True 0.392 0.232 0.160 N/A N/A N/A 

Both outcome 
and exposure 
correct 

0.384 0.230 0.154 92 96 94 

Outcome 
correct, 
exposure 
incorrect 

0.393 0.230 0.163 93 96 93 

Exposure 
correct, 
outcome 
incorrect 

0.391 0.230 0.161 95 95 95 

Both outcome 
and exposure 
incorrect 

0.471 0.216 0.256 34 93 47 

Table 4 presents the performance of our tests of model specification, in terms of the distribution 
of the 200 P‐values and the mean of the test statistic, using the modified Bang and Robins 
approach. Note that when the null hypothesis is true, the distribution should be approximately 
Uniform(1), and the mean of the test statistic should be approximately 2.0. The first column 
shows that the P‐values for the test of the outcome model follow the Uniform(1) distribution, and 
the mean of the test statistic is approximately 2.0 when both models are correct or when the 
outcome model is correct but the exposure model is incorrect; when the outcome model is 
incorrect, the P‐values are quite small, and the mean of the test statistic equals 129.5 when the 
exposure model is correct and 95.2 when the exposure model is incorrect. The second column 
shows similar results for the test of the exposure model. Particularly noteworthy are the results of 
the test when both outcome and exposure models are specified incorrectly. In this scenario, we 
would not necessarily expect the hypothesis testing methods to correctly reject the null 
hypotheses; however, both tests reject almost all of the time (percent rejected is 100% for the test 
of the outcome model and 96% for the test of the exposure model). For comparison, we also 
assessed the performance of our tests of model specification using the modified Kang and 
Schafer approach when both models are incorrectly specified as before. Under these conditions, 
the modified Kang and Schafer approach is identical to the exposure modeling approach. 
Therefore, for the test of the exposure model, the test statistic equals 0 each time, and the percent 
rejected is 0%. For the test of the outcome model, however, the mean of the test statistic equals 
83.0, and the percent rejected is 100%; this reflects the substantial discrepancy between the 
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estimates presented earlier from the modified Kang and Schafer approach when both models are 
incorrectly specified and those obtained from the outcome modeling approach when the outcome 
model is incorrectly specified.  

Table 4. P‐value distribution of goodness‐of‐fit test under four model specifications using modified Bang 
and Robins doubly robust approach. 

 

• Scenarios: 1, both outcome and exposure correct; 2, outcome correct, exposure incorrect; 3, 
exposure correct, outcome incorrect; 4, both outcome and exposure incorrect.  



The simulation studies showed that when at least one of the two models is specified correctly, 
the modified Bang and Robins approach and the modified Kang and Schafer approach perform 
similarly well. The estimates have little bias, and the 95% CIs have close to 95% coverage. 
Interestingly, for our simulated data in which neither the exposure model nor the outcome model 
is correct, the modified Bang and Robins approach performs significantly better than the 
modified Kang and Schafer approach. This stands in contrast to the results presented by Kang 
and Schafer 6 for their simulation settings, albeit in a much simpler context. For our simulation 
settings, our results overcame a serious limitation of doubly robust methods. When neither the 
exposure model nor the outcome model is correct, the behavior of doubly robust models is 
unpredictable. Under these circumstances, a doubly robust model is not a reliable gauge for how 
well the exposure and outcome models fit the data. Nevertheless, for our simulation settings, our 
hypothesis tests based on the modified Bang and Robins approach correctly detected that neither 
model was correct when in fact neither model was correct. Those based on the modified Kang 
and Schafer approach could not reject the exposure model but do detect that the mean model is 
incorrect. As documented by Kang and Schafer 6, using a doubly robust model with two 
incorrect models does not necessarily provide improvement in point estimation over using either 
single incorrect model.  

5 Application to the Florida Behavioral Risk Factor 
Surveillance System Survey data 
Tables 5 and 6 present the results of applying our modified Bang and Robins 5 approach and our 
modified Kang and Schafer [6, section 3.2] approach, respectively, to the 2007 Florida BRFSS 
Survey data. For comparison, Table 1 presents the results from Brumback et al. 1. The outcome 
represents whether a survey participant could afford to visit a doctor in the past year. The 
exposure is disability status, determined for each respondent by the definition used by the 
Centers for Disease Control and Prevention. The modifier is age, categorized into three groups: 
18–29, 30–64, and 65 years or older. The confounders are race/ethnicity categorized into four 
groups (non‐Hispanic White; non‐Hispanic Black; Hispanic of any race; others), annual 
household income categorized into five groups (less than 20,000; 

20,000–24,999; 25,000–34,999; 

35,000–49,000; $50,000 or more), and education categorized into four groups (less than high 
school; high school graduation or equivalent; some college; college degree or higher). 
Respondents with any missing data were excluded from the analysis. Total sample size was 
31,590.  

Table 5. Testing and estimating effect‐measure modification by age of the adjusted risk difference for 
the effect of disability on cost barriers to health care, using modified Bang and Robins doubly robust 
estimation with complex survey data, Florida Behavioral Risk Factor Surveillance System Survey, 2007.  
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Age group (years) Risk for PWD (95% CI) Risk for PWOD (95% CI) Risk difference (95% CI) 

18–29 0.366 (0.238, 0.494) 0.224 (0.183, 0.265) 0.142 (0.008, 0.275) 

30–64 0.249 (0.216, 0.281) 0.146 (0.133, 0.160) 0.102 (0.068, 0.137) 

65+ 0.071 (0.052, 0.091) 0.040 (0.028, 0.051) 0.032 (0.009, 0.054) 

• test of effect‐measure modification: 13.73 (P < 0.001); test of doubly robust model versus 

outcome model: 0.90 (P = 0.82); test of doubly robust model versus exposure model: 21.94 
(P < 0.001).PWD, person with disability; PWOD, person without disability.  

Table 6. Testing and estimating effect‐measure modification by age of the adjusted risk difference for 
the effect of disability on cost barriers to health care, using modified Kang and Schafer doubly robust 
estimation with complex survey data, Florida Behavioral Risk Factor Surveillance System Survey, 2007.  
Age group (years) Risk for PWD (95% CI) Risk for PWOD (95% CI) Risk difference (95% CI) 

18–29 0.361 (0.237, 0.486) 0.222 (0.181, 0.263) 0.140 (0.009, 0.270) 

30–64 0.245 (0.213, 0.277) 0.145 (0.132, 0.159) 0.100 (0.066, 0.134) 

65+ 0.072 (0.052, 0.092) 0.039 (0.028, 0.051) 0.033 (0.009, 0.057) 

• test of effect‐measure modification: 11.18 (P = 0.004); test of doubly robust model versus 

outcome model: 0.50 (P = 0.92); test of doubly robust model versus exposure model: 
23.94(P < 0.001).PWD, person with disability; PWOD, person without disability.  

The second column of Table 1 presents the results from the exposure modeling approach. There 
is strong evidence of modification of the risk differences by age (P < 0.001). The youngest adults 
(18–29 years) have a slightly lower risk difference than the middle‐aged adults (30–64 years), 
whereas the oldest adults (65+ years) have the lowest risk difference; only the risk difference for 
the middle‐aged adults is statistically significantly different from 0. The third column of Table 1 
presents the results from the outcome modeling approach. There is still strong evidence of 
modification by age (P < 0.001). However, in this case, all risk differences are statistically 
significantly different from 0, and the risk differences trend higher as the respondents trend 
younger. The results from the outcome model are qualitatively similar to the crude (unadjusted) 
results of column one of Table 1, and they better correspond to the hypothesis of our colleagues 
in the Florida Office on Disability and Health than do the results from the exposure model. 
Therefore, we were very curious to determine which results were more plausible.  

Tables 5 and 6 show that the outcome model fits the data better, assuming that at least one of the 
exposure or outcome model is correct. Consequently, the adjusted risk differences for both 
doubly robust approaches are very similar to those of the outcome modeling approach, and the P‐
values for testing the outcome model versus the doubly robust model are 0.82 and 0.92, for the 
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modified Bang and Robins and modified Kang and Schafer approaches, respectively. On the 
other hand, the P‐values for testing the exposure model versus the doubly robust model 
are < 0.001 for both doubly robust approaches; that is, the exposure model and ensuing results 
are rejected.  

6 Discussion 
Motivated by the research question of our colleagues in the Florida Office on Disability and 
Health, we have developed and applied two doubly robust approaches for testing and estimating 
effect‐measure modification with complex survey data, and furthermore, we have constructed 
two hypothesis tests for determining the plausibility of the results of the exposure modeling 
approach and the outcome modeling approach applied previously. The results of our simulation 
study confirmed that the approaches work well, and surprisingly, our hypothesis testing 
procedure was able to detect dual‐model misspecification (i.e., misspecification of both the 
exposure and outcome models). The results of applying both doubly robust methods to our 
application perfectly documented the suspicions of our colleagues that in youngest (18–29 years) 
adults, the effect of disability on the presence of a cost barrier to health care is the strongest, 
when measured by the risk difference.  

We were lucky that in our application, one model appeared plausible and the other implausible. 
In other applications, it could happen that neither model provides a satisfactory fit to the data. It 
would be of further interest in future research to investigate such an application and develop 
diagnostics that might be useful in improving either the exposure model or the outcome model.  

It is worth noting that the research was motivated by our initially unsatisfactory analyses, in 
which the exposure modeling and outcome modeling approaches led to different conclusions. 
This paper presents a case study of our research, aimed at providing a convincing statistical 
argument for our colleagues to achieve their goal of promoting intervention efforts targeting 
younger persons with disability. If one were solely interested in correctly estimating functions of 
risks from the beginning of the study, then the analyst could deploy a doubly robust model 
without regards as to which of the component models is in fact correct. On the other hand, if one 
were additionally interested in which of the exposure or outcome model better fits the data, then 
the goodness‐of‐fit tests are also of use. Furthermore, our simulation studies have indicated that, 
although they cannot be expected to perform well all of the time, the goodness‐of‐fit tests do 
have some potential as a diagnostic tool to detect dual‐model misspecification. In our simulation 
studies, we found that the modified Bang and Robins goodness‐of‐fit test detected dual 
misspecification but that the Kang and Schafer goodness‐of‐fit test only detected 
misspecification of the exposure model. The reliability of either method for detecting dual 
misspecification depends on the extent of disagreement between the doubly robust estimate on 
the one hand and the estimate based on the exposure model or that based on the outcome model 
on the other hand. When the doubly robust estimate happens to agree with either of the other 
two, we will fail to detect dual misspecification.  
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